Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets.
نویسندگان
چکیده
Few-layered graphene oxide (FGO) was synthesized from graphite by using the modified Hummers method, and was characterized by scanning electron microscopy, atomic force microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. The prepared FGO was used to adsorb Pb(II) ions from aqueous solutions. The abundant oxygen-containing groups on the surfaces of FGO played an important role in Pb(II) ion adsorption on FGO. The adsorption of Pb(II) ions on FGO was dependent on pH values and independent of ionic strength. The adsorption of Pb(II) ions on FGO was mainly dominated by strong surface complexation. From the adsorption isotherms, the maximum adsorption capacities (C(smax)) of Pb(II) ions on FGO calculated from the Langmuir model were about 842, 1150, and 1850 mg g(-1) at 293, 313, and 333 K, respectively, higher than any currently reported. The FGO had the highest adsorption capacities of today's nanomaterials. The thermodynamic parameters calculated from the temperature dependent adsorption isotherms indicated that the adsorption of Pb(II) ions on FGO was a spontaneous and endothermic process.
منابع مشابه
Toxic metal removal from aqueous solution by advanced Carbon allotropes: a case study from the Sungun Copper Mine
The sorption efficiencies of graphene oxide (GO) and functionalized multi-walled carbon nanotubes (f-MWCNTs) were investigated and elucidated to study their potential in treating acid mine drainage (AMD) containing Cu2+, Mn2+, Zn2+, Pb2+, Fe3+ and Cd2+ metal ions. Several layered GO nanosheets and f-MWCNTs were formed via the modified Hummers’ method and the acid treatment of the MWCNTs, respec...
متن کاملSynthesis of graphene oxide-Melamine – TioOxalic acid nanocomposite and its application in the elimination of Mercury (II) ions
In this study a new method by Application of graphene oxide Nano sheets– Melamine –TioOxalic acid composite was exhibited as adsorbent for the elimination of toxic mercury (II) ions from aqueous solutions. The combine has the authority to adsorb the organic and inorganic combines. Through the immobilization of Melamine-TioOxalic acid (MTO) onto graphene oxide nanosheets, the desired composite w...
متن کاملRemoval of Pb(II) and Cu(II) Ions from Aqueous Solutions by Cadmium Sulfide Nanoparticles
In this study, cadmium sulfide nanoparticles (CdS NPs) were prepared, characterized and used as a new adsorbent for simultaneous removal of Pb(II) and Cu(II) ions from aqueous solutions. Using a batch adsorption method, the effects of solution pH, contact time, adsorbent dose, and temperature were studied and optimized. Removal efficiencies, higher than 98% were obtained for both the met...
متن کاملEnhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite "2279
The heavy metals, such as Pb(II) and radioisotope Cr(III), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is of the utmost importance to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, the reduced graphene oxide based inverse spinel nic...
متن کاملThermodynamic study of (pb2+) removal by adsorption onto modified magnetic Graphene Oxide with Chitosan and Cysteine
A new modified magnetic Graphene Oxide with Chitosan and Cysteine wassynthesized for removing Pb2+ ions from aqueous solution. The properties of thisadsorbent were characterized by Field Emission Scanning Electron Microscopy (FESEM),Vibrating Sample Magnetometer (VSM) and Energy Dispersive Analysis Systemof X-ray (EDAX). Physicochemical parameters such as effect of pH, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 40 41 شماره
صفحات -
تاریخ انتشار 2011